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Abstract — For large wireless sensor networks, identifying the
exact location of every sensor may not be feasible and the cost
may be very high. A coarse estimate of the sensors’ locations is
usually sufficient for many applications. In this paper, we propose
an efficient Area Localization Scheme (ALS) for underwater
sensor networks. This scheme tries to estimate the position of
every sensor within a certain area rather than its exact location.
The granularity of the areas estimated for each node can be easily
adjusted by varying system parameters. All the complex
calculations are handled by the powerful sinks instead of the
sensors. This reduces the energy consumed by the sensors and
helps extend the lifetime of the network.

I. INTRODUCTION

Underwater sensor networks (UWSNSs) deployed in the
oceans will consist of sensors equipped with acoustic modems
that enable them to communicate wirelessly with one another.
UWSNs can also include unmanned autonomous vehicles
working together with the static sensors deployed on the
seabed or in midwater, and they would cooperate in the sensing
task and send their data to a central sink in a multi-hop manner
for real-time processing. The nature of underwater sensor
networks is fundamentally different from that of terrestrial
sensor networks. Acoustic communications is used instead of
RF (Radio Frequency) because RF signals cannot travel far
underwater due to scvere absorption losses. Underwater
acoustic channels are characterized by harsh physical layer
environments, where the available bandwidth is severely
limited and channels are severely impaired due to multi-path
and fading problems. Acoustic signals also travel at five orders
of magnitude lower than RF signals, and consequently, the
propagation delay is very significant and has a high variance.

Localization is the problem of determining the location of
each sensor in a sensor network. In most of the underwater
applications mentioned above, it is critical for each node to
know its location. The Global Positioning System (GPS) used
for locating nodes in terrestrial networks cannot be used in
UWSN, as the high frequency radio waves are absorbed by the
water and cannot travel far. Several localization schemes have
been proposed for terrestrial sensor networks but these
localization schemes cannot be directly applied to UWSN due
to the distinct nature of the UW channels. Hence, the need to
develop new localization schemes that work well in underwater
scenarios arises.

II. RELATED WORK
The localization schemes, that have been proposed to date,

can be broadly classified into two categories: range-based and

range-free. In range-based schemes, the distance or angle
measurements from a fixed set of reference points are known.
Multilateration techniques are then used to estimate the
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location of each sensor node. Range-based schemes use Time
of Arrival (TOA), Time Difference of Arrival (TDOA), Angle
of Arrival (AOA) or Received Signal Strength Indicator (RSSI)
to estimate their distances to the anchor nodes [1][2].

Range-free localization schemes usually do not make use
of any of the techniques mentioned above to estimate exact
distances to reference nodes. Some range-free schemes employ
multilateration techniques after estimating distances to anchor
nodes using hop count information [3]. Other schemes like
Approximate Point in Triangle (APIT) [4] and Area
Localization Scheme (ALS) [5] use an area based approach for
localization in terrestrial sensor networks. Range-free schemes
generally offer a less precise estimate of location compared to
range-based schemes.

In order to take advantage of the slow propagation speed
of sound under water, range-based schemes that use ToA and
TDoA are suggested for UWSNs [6][7] and some range-based
schemes that use ToA and TDoA have been compared in [8].
However, perfect time synchronization among all the nodes in
the system is assumed which greatly simplifies or eliminates
one of the two major challenges. Firstly, these schemes are
vulnerable to the speed of sound, which is not constant under
water. The speed of sound depends on a number of factors like
temperature, pressure and salinity. Complicated signal
processing techniques would be needed to compensate for this
variation. Secondly, time synchronization between nodes is
critical for ToA and TDoA approaches. Synchronizing the
clocks of nodes is challenging underwater because of the long
propagation delays and the harsh physical layer environment in
consideration. Time synchronization would also increase the
communications overhead and compete for the scarce wireless
bandwidth.

III. AREA LOCALIZATION SCHEME

We propose an arca-based localization scheme (ALS) for
large underwater wireless sensor networks which derives from
the terrestrial version [5]. This is a centralized range-free
scheme that provides a coarse location estimation of a sensor
within a certain area, rather than its exact position. The
advantage of this scheme lies in its simplicity, as no TDoA,
ToA, RSSI or AoA measurements need to be made by the
sensor. More importantly, the clocks of the nodes in the system
need not be synchronized, and the scheme is not vulnerable to
the varying speed of sound underwater. There are three
categories of nodes in ALS, according to their different
functions: reference nodes, sensor nodes and sinks.

A. Reference Nodes (Anchor Nodes)
The main responsibility of the reference (or anchor) nodes
is to send out beacon signals to help sensor nodes locate



themselves. Reference nodes are assumed to know their
locations. In addition, the reference nodes can send out
acoustic signals at varying power levels as required. In this
paper, we shall use the terms reference node and anchor node
interchangeably.

Acoustic signals are susceptible to a wide range of
limitations such as attenuation, long propagation delays, multi-
path effects, Doppler effects and ambient noise. The spreading
loss of acoustic signals under water can be modeled as
cylindrical or spherical [9]. The spherical model, which we
adopt, has a path loss exponent of 2, and the path loss can be
be expressed in dB as:

R
TLsphzrical =20 log(R—J (1)

1m
where R = radial distance from the source and R, = 1
meter is the reference unit distance. In addition, the acoustic
waves also undergo attenuation losses which can be modeled
by:

TL, = aR #)

where a is the attenuation coefficient. For frequencies
below 50 kHz, the attenuation coefficient can be approximated
by Thorp’s equation [10]:
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The total propagation path loss is therefore given by:
TL total TL spherical + TL att (4)

From the above equations, it can be clearly seen that if the
received power is fixed at a certain value, the beacon signal
with a higher transmitted power reaches a greater distance.
Using the physical layer model described above and the
threshold (lowest) power that each sensor can receive, the
reference node can calculate the power required to reach
different distances. Each reference node then devises a set of
increasing power levels such that the highest power level can
cover the entire area in consideration. The reference nodes then
broadcast several rounds of beacon signals. The beacon packet
contains the ID of the reference node and the power level at
which the signal is transmitted (which can be simply
represented by an integer value, as explained below).

Let the set of increasing power levels of beacon signals
sent out by an anchor node be denoted by PS. For now, let us
assume that all the anchor nodes in the system send out the
same set PS of beacon signals. In the ALS scheme, the sensor
node simply listens and records the power levels of beacon
signals it receives from each anchor node. In real
environments, multi-path and Doppler effects can cause the
power levels received by the sensor nodes to vary significantly
from the expected power levels calculated by the path loss
models in Eqn. (4). Sending out beacon signals in the set PS
only once might lead to inaccurate power levels being
measured by sensor nodes. As a result, the anchor nodes send
out the beacon signals in set PS multiple times. The sensor
nodes can then calculate the statistical average (mode or mean)
of the received power levels from each anchor node.

Let the number of power levels in set PS be denoted by N,
Let the N, power levels in set PS be represented by P;, P,
Ps, ... Py,. The power levels P;, Po, Ps, ... Py, can be represented
by simple integers; therefore sensor nodes only need to take
note of these integer values that are contained in the beacon
packets and the hardware design can be kept simple as there is
no need for accurate measurement of the received power level.
Let the number of times that the same set of beacon signals PS
are sent out be denoted by Nr, also referred to as the number of
rounds. The power MP in dB required to cover the entire area
is calculated from equation (4). The power LP in dB required
to cover a small distance ¢ (say 10 m) is also calculated. The
values P; P, P;,....Py, are then set to be N, uniformly
distributed values in the range [LP, MP] in the dB scale. The
simple procedure followed by the anchor nodes is shown
below:

1 Fori=1:Nr

2 For j=1: N,

3 Send beacon signal at power level P;
4 End

5 End

The transmissions by the different anchor nodes do not
need to be synchronized. However, they schedule the beacon
signal transmissions so as to avoid collisions. The transmitted
set of power levels PS need not be the same for all the
reference nodes, and can be configured by the user. In addition,
the set of power levels PS need not be uniformly distributed
too. It is also not necessary for the anchor nodes to know one
another’s position and levels of transmitted power, but there
should be at least one sink or a central agent that stores the
location information of all the reference/anchor nodes.

B.  Sensor Nodes

A sensor node is a device that monitors the environment.
Sensors typically have limited computing capability, storage
capacity, communication range and battery power. Due to
power constraints, it is not desirable for sensor nodes to make
complex calculations and send out information frequently.

B.1 Signal Coordinate Representation:

In the ALS scheme, the sensors save a list of reference
nodes and their respective transmitted power levels. The sinks
use this information to identify the area in which the sensors
reside in. However, if the number of reference nodes is large,
the packets containing location information may be long,
which might result in more traffic in the network. A naming
scheme is hence designed.

The sensor nodes use a signal coordinate representation to
indicate their location information to the sinks. Power contour
lines can be drawn on a grid based on the set of beacon signal
power levels PS transmitted by each anchor node, and their
corresponding distances traveled. The power contour lines
divide the arca in consideration into many sub-regions as
shown in Figure 1. Each sub region in the grid can be
represented by a unique set of » coordinates, referred to as the
signal coordinate from hereon.



Suppose there are n reference nodes, which are referred to
as R;, R, . and R, For a sensor in the grid, let the lowest
transmitted power levels it receives from the » reference nodes
be S;, S, and S, respectively. S;, S, and S, are simple
integer numbers indicating the different power levels rather
than the actual signal strengths. The mappings between the
integer levels and actual power values are known only by the
reference nodes and sinks. A signal coordinate is defined as the
representation <55, S,> such that each S;, the i" coordinate,
is the lowest power level received from anchor node i.

<3313
®5 | @

00
aiase—f ' F AL

32373 / \ B323

L <3333= 4

18

100l 2333

",

3331=

X
N
[ ‘ . R

0
ol @ w0 W w0
1333

Figure 1. An example of the ALS under ideal isotropic
conditions. Shaded region is <3, 3, 3, 2>

For example, consider a square area with anchor nodes at
the four corners as shown in Figure 1. In this case, the set of
power levels PS that form the grid is the same for all the four
anchor nodes and there are three power levels in the set PS.
The smallest power level in the power set PS is represented by
the integer 1 while the highest power level is represented by
the integer 3. For each node, the contour lines represent the
farthest distances that the beacon signals at each power level
can travel. Contour lines for beacon power levels 1 and 2 are
drawn. The power level 3 for each corner anchor node extends
beyond the corner that is diagonally opposite to it and so, its
corresponding contour line is not seen on the area. Thus, for
each anchor node, the two contour lines corresponding to
power levels 1 and 2 divide the area into three regions.

For a sensor node in the shaded region, the lowest power
level received from anchor nodes 1, 2 and 3 is 3. The sensor
node also receives beacon signals at power levels 2 and 3 from
anchor node 4. So, the lowest power level received by the
sensor from anchor node 4 is 2. As a result, the shaded region
in the figure can be represented by the unique signal coordinate
<3,3,3.2>. Similarly, every other region in the square area can
be represented by a unique signal coordinate, as shown in the
figure. As stated in the signal coordinate definition, the lowest

power level received from anchor node i forms the i”

coordinate of the signal coordinate. Sensors use this unique
signal coordinate to identify the area in which they are located.

B.2 Algorithm

In the ALS scheme, a sensor node simply listens to signals
from all reference nodes and records the information that it
receives from them. A sensor node at a particular location may
receive localization signals at different power levels from the
same reference node, as illustrated in the example above. The
sensor measures its signal coordinate and stores this
information to be forwarded to the sinks when required.

Let the signal coordinate of a node be denoted as <S},5;,
Ss,..,S,> where n is the number of anchor nodes. A sensor node
uses variables L,;, Li, Lis, ..., Ly to represent the lowest power
levels received by the sensor from anchor node i during rounds
1 to NV, Let the number of anchor nodes be 7. Initially, all the
values L]], L]g, L]g, v L]N,, L21, L22, L23, ...,LgNr,..., Ln], Lng,
L3 ..., Ly are set to zero which imply that the sensor nodes
have not received any signals from the reference nodes.

After initialization, the sensor nodes start an infinite loop
to receive beacon messages from anchor nodes and follow the
algorithm shown below. Since a reference node sends out
several rounds of signals, the sensor node may hear multiple
rounds of beacon signals from the same reference node. If the
sensor receives a signal from reference node i for the first time
during round j, it sets L; to be the lowest received power level
for that round; otherwise, if the received power level from
anchor node 7 in round j is lower than than the value stored in
L, then Lj is set to the new lowest received power level. After
all the anchor nodes have sent all beacon messages, the power
levels L;; to Ly, on each sensor represent the lowest power
levels received from anchor node i during rounds 1 to Nr
respectively.

Initialization:
lfori=1ton

2 forj=1to Nr
3 L;=0

4 end

5 end

Loop:

1 receive a message
2 if (the message is from reference node i during round ;)

3 if (L; = 0 || received power level < Ly)
4 L;; = received power level

5 end if

6 end if

Each reference node sends out beacon signals at all the
power levels in the set PS Nr times (Vr rounds). Hence, the
lowest signal power level received by a sensor from an anchor
node need not be the same for all the rounds 1 to Nz, i.e. all the
values L;; to L;y, need not be the same. One is then faced with
the problem of deciding which value ;. to pick as S;, the i
element of the signal coordinate. Hence, a threshold value
CONFIDENCE LEVEL is defined. This parameter represents
the confidence level with which the values S;, S, ..., S, can be
estimated. For example, by setting this value to 80% of Nr in
our simulations, if there is a power level L, that occurs with



frequency greater than CONFIDENCE LEVEL in the set {L;;,
o, Ly}, then L is selected as the i element in the node’s
signal coordinate, i.e. S; = L;. If there is no power level with
frequency greater than CONFIDENCE LEVEL, then all the
distinct power levels in the set {L;;, ..., Lj,} are considered
possible candidates of the i element in the signal coordinate.

The above concept is illustrated by a few examples here.
The shaded area in Figure 1 represents the case of the signal
coordinate <3,3,3,2>. In this case, there exists power levels
which occur with frequency greater than
CONFIDENCE LEVEL in the set {L,;, ..., Ly}, for each
signal co-ordinate S;.

Now, consider the other scenario where the lowest power
level received from anchor 1 during the Nr rounds of beacon
messages oscillates between 2 and 3. If the power levels 2 or 3
do not occur with frequency  greater  than
CONFIDENCE LEVEL in the set {L;;, ..., L;n»4, both 2 and 3
can then be considered possible candidates for .S;. The shaded
region in black in Figure 2 represents this case: <{2,3},3,3,3>.
There also could be scenarios where no beacon packets are
received from an anchor node. For example, if no information
is available on the first coordinate, the signal coordinate region
<{1,2,3},3,3,3> is considered as the area estimate. The region
<{1,2,3}, 3,3,3> is represented by the union of the red and
black regions in Figure 2.

Thus, each coordinate S; in the signal coordinate <S;, .S,
Ss, ..., S>> need not be a unique value, but could be represented
by a set of values as shown in the examples here.
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Figure 2. <{2,3}, 3, 3, 3> and <{1,2,3}, 3.3,3>

C. Sink

A sink collects information from sensor nodes and then
processes the information to estimate the area in which the
sensor is located. A sink usually has much higher capabilities
in computing and processing than a sensor node, and it
determines where the sensor is based on the signal coordinate
information obtained from the sensor. One assumption of the
ALS scheme is that the sink knows the positions of all the

reference nodes and their respective transmitted power levels,
through direct communications with the reference nodes, or
other means. Together with the physical layer model and signal
propagation algorithms, the sink is able to derive the map of
areas divided by all the transmitted signals from the reference
nodes. With the map and the signal coordinate information, the
sink can find out which area a sensor is in when receiving data
and location information (signal coordinate) from it. In the
ALS scheme, the signal propagation model chosen plays an
important part in the estimation accuracy. For different
networks, different signal propagation models can be used to
derive the signal map according to the physical layer
conditions. Using the same network topology shown in Figure
1, an irregular signal model could divide the whole area into
many different shapes, as shown in Figure 3.
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Figure 3. ALS example using an irregular signal
model

Iv. GRANULARITY

The size of the region in which a sensor is estimated to be
in is based on its position and the signal coordinate that it
measures. Granularity is defined as the average of the area
estimates of all the sensors in the network. As it is unlikely that
all nodes will liec in their estimated arcas, another metric
average accuracy is defined to measure the percentage of
nodes in the network that lie in their estimated areas.

Both granularity and average accuracy are affected by the
following four parameters:

Number of reference nodes 7

Positions of the reference nodes

Number of transmitted power levels N, in the set PS
Transmitted power levels P; P, Ps, ..., Py,

To achieve a desired granularity, the user may choose to
change one or more of the four parameters. The number and
positions of reference nodes are usually determined at the time
of deployment of the sensor network. So, these two parameters
should be carefully designed by the network administrator
before the deployment of the network. The granularity can be



changed after the deployment of the network by adjusting the
number of transmitted power levels and the transmitted power
at each level for the reference nodes.

Different strategies are employed to increase granularity in
ideal and non-ideal environments. An ideal environment is
defined as one where the attenuation of accoustic signals
follows the predicted path loss model (spherical in our case)
very closely and the fading and shadowing effects are
insignificant. On the other hand, a non-ideal environment is
one where fading and shadowing effects are significant.

Let us assume that the N, power levels transmitted by each
anchor node are uniformly distributed in the range [LP, MP] as
described in section IIILA. Increasing the number of power
levels N, would then imply reducing the power difference
between adjacent power levels.

Under ideal or close to ideal conditions, most nodes
measure their signal coordinates correctly because of the very
low variance in power levels of the beacon packets received.
For such conditions, granularity can be increased by just
increasing the number of power levels, resulting in smaller
regions being created in the grid, thus increasing granularity.

Under non-ideal conditions, increasing the number of
power levels would not increase granularity as in the ideal
case. As the power difference between adjacent levels
decreases, fading and shadowing effects cause the received
signal strength to vary by more than the difference in adjacent
power levels. As a result, fewer nodes will measure their signal
coordinates correctly. Consequently, wrong measurement of
signal coordinates will lead to wrong area estimates.

The number of sensor nodes measuring their signal
coordinates incorrectly can be reduced by having a small
number of power levels, and concurrently maintaining a
significant power difference between adjacent power levels.
However, fewer power levels result in larger regions being
created in the grid, thus leading to reduced granularity. To
increase granularity, we propose performing ALS multiple
times, but with a small distinct set of power levels PS for each
run and a significant power difference between adjacent power
levels. Each round of ALS gives an area estimate for the sensor
node based on its signal coordinate. The intersection of the
areas obtained from the different rounds of ALS can be used to
estimate the final area in which the sensor is located.

Figure 4 shows an example of ALS done with six rounds
i.e. six distinct PS sets, where cach set contains three distinct
power levels with significant difference between adjacent
power levels. For the first three rounds, the anchor nodes at the
four corners send out beacon signals, and for the next three, the
anchor nodes at the mid-points of the four sides send out
beacon signals. Each color represents a set of power contour
lines. Figure 4 represents the final grid obtained by overlapping
the contour lines from all the six rounds. The final arca
estimate of a sensor is the intersection of the areas obtained
from all the rounds that have been carried out. If the areas
obtained from all the rounds completed do not intersect, the
largest intersecting area obtained is considered as the area
estimate. Therefore, the final arca estimate of each sensor node
is one small region or a combination of many small regions in

the final grid shown here. The sensor nodes simply measure
their signal coordinates for each round of ALS, and forward it
to the sink which does all the complex computations.

V. RESULTS AND OBSERVATIONS

A.  Performance metric for ALS

The metrics, average accuracy and granularity, are
defined in Section IV. High levels of both accuracy and
granularity are desired. However, average accuracy begins to
degrade as granularity increases, as the probability of
estimating the location of a node correctly in a smaller region
decreases. Hence, the performance metric used to evaluate the
ALS is the average accuracy normalized with respect to the
average area estimate (granularity) i.e. Average Accuracy /
Average Area Estimate.

£

Figure 4. Sample grid with 6 rounds of ALS

B.  Simulation scenario

The QUALNET 3.8 simulation environment is used to
evaluate the performance of ALS. The system parameters used
in our simulation scenario are described below.

¢ Area: Square area of size 500mx500m is considered.

+ Physical layer: Spherical spreading model with attenuation
losses is considered. In the non-ideal case, Rayleigh fading
and shadowing losses are also considered.

¢ Transmission Frequency: Acoustic transmission frequency
is set to 15 kHz.

¢ Node placement: A wireless sensor network with 500
nodes (eight of which are anchor nodes) is considered. The
sensors are placed randomly throughout the area, and the
eight anchor (reference) nodes are positioned at the four
corners and at mid-points of the four sides of the square
arca. While there are eight anchor nodes in the network,
only four send out beacon signals during each ALS round.

¢ Anchor to Node Range Ratio (ANR): This parameter
refers to the average distance an anchor beacon signal
travels divided by the average distance a regular node



signal travels. The range of sensors is set to 50m, while the
transmission range of anchors is set to 1000m i.e. ANR is
set to 20. The transmission range of the anchor nodes is
enough for the beacon signals to cover the whole area.

¢ Node Density (ND): The node density refers to the
average number of nodes per node range arca. This value
is close to 13 for our system.

¢ Anchor Percentage (AP): The anchor percentage refers to
the number of anchors divided by the total number of
nodes. We consider systems with low AP: 1.6% (8/500).

¢ Receiver Threshold Power: The receiver threshold power
refers to the lowest signal strength of a packet that a node
can receive. The value is set to -50 dBm.

¢ Nrrefers to the number of times each beacon signal is sent
out by a reference node. This parameter is set to 20.

+ Mobility: None. All the nodes are assumed to be static.
¢ CONFIDENCE LEVEL: 80%.

C.  ALS under non-ideal conditions

The ALS is evaluated under both ideal and non-ideal
conditions for 10 rounds. The results on Average
Accuracy/Average Arca Estimate is then plotted against .the
number of rounds of ALS, as shown Figure 5 and summarized
in TABLE 1.

Lwerage Accuracy/bwerage Area Estimate vs. # of rounds completed
120 T T T T T T T T
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Figure 5. Average Accuracy/Average Area Estimate

Ideal spherical Non ideal spherical
conditions conditions
#Hof LP | MP | Avg. % of nodes | Avg. % of
rounds Area that lie in Area nodes that
finished Est. as their area Est. as % | lie in their
% of estimate: of grid area
grid Accuracy size estimate:
size Accuracy
1 -15 | 15 23.7 100 36.5 96.9
2 -14 | 16 13.3 100 10.3 94.3
3 -13 | 17 9.4 100 8.6 90.3
4 -12 | 18 5.9 100 6.6 85.7
5 -11 19 2.9 100 5.8 80.1
6 -15 | 15 1.4 100 4.9 73.4
7 -14 | 16 1.0 100 4.1 69.3
8 -13 | 17 0.96 100 3.8 65.3
9 -12 | 18 0.93 100 3.1 63.2
10 -11 19 0.82 100 3.0 61.2

TABLE 1: DATA FOR THE NON-IDEAL CASE

Under ideal cases, the average accuracy is always 100%,
as all nodes detect their signal coordinate correctly. For the
non-ideal case, as the number of rounds increases from 1 to 10,
average accuracy decreases from 96.9% to 61.2% (TABLE 1).
This is because a wrong signal coordinate measured in any one
of the rounds would result in the final area being estimated
incorrectly, as the intersection of areas from all rounds is
considered in the final area ecstimate. On the other hand,
granularity increases i.c. the average area estimate decreases
from 36.5% of the grid size to 3. 0% of the grid size (TABLE
1). The granularity increases as the final intersection regions
for all sensors get smaller and smaller as the number of rounds
increases.

The performance metric (Average Accuracy/Average Arca
Estimate) shown in Figure 5 increases, and starts to flatten out
as the number of rounds increases. The performance metric
increases as the decrease in average arca estimate is greater
than the decrease in average accuracy after each additional
round of ALS. The performance flattens out because of the
quantization of power levels, and the constraint of maintaining
a significant difference between adjacent power levels (15 dB
in this case). The ALS can be stopped once desirable accuracy
levels and granularity are obtained.

Nodes that are closer to boundaries are more prone to
measuring the wrong signal coordinate. An analysis was
carried out to investigate the error patterns of nodes that did
not lie in their estimated areas. It was observed that nodes,
whose locations were estimated incorrectly, were very likely to
be in an adjacent region of comparable arca size in the final
grid. It was observed that close to 96% of nodes lay in the
estimated region, or in an adjacent region of comparable size.

The centroid of each sensor’s arecas estimate can be
considered its location. Assuming the centroids as the location
estimates, it was observed that the average error was close to
0.75*R (transmission range) for the scenario in consideration.

D. Comparison with other area localization schemes

The performance of ALS after 10 rounds is compared to
two other range-free area localization schemes, namely, PIT
(Point in Triangle) and APIT (Approximate Point in Triangle).



In the PIT and APIT schemes, a node chooses a set of
three audible anchors and tests whether it is inside the triangle
formed by connecting them. The theoretical method used to
determine whether a point is inside a triangle or not is called
the Point-In-Triangle (PIT) test [4]. The PIT test can be carried
out only under ideal physical layer conditions, when every
node in the network is mobile and can move around its own
position. Due to the infeasibility of conducting such a test, an
APIT (Approximate Point in Triangle) test is proposed [4]. The
PIT or APIT tests are carried out for different triangular anchor
combinations until all combinations are ecxhausted. The
information is then processed by a central server to narrow
down the possible area in which a target node resides.

Figure 6 shows all the possible triangles for the given
configuration of the eight anchor nodes. There are 52 triangles
in total (¢C; — 4). The sensor nodes determine whether they are
inside or outside of each of the 52 triangles, and the final area
estimate computed is a small region or combination of regions
on the grid. Since PIT and APIT are both area localization
schemes, their performance are compared with ALS using the
(Average Accuracy/Average Arca Estimate) metric. The
following five cases are compared and the results presented in
Figure 7.

i.  ALS under ideal physical layer conditions after ten

rounds

ii. PIT under ideal physical layer conditions

iii. APIT under ideal physical layer conditions

iv. ALS under non ideal physical layer conditions after

ten rounds

v. APIT under non ideal physical layer conditions

The PIT and APIT schemes are carried out under ideal
conditions to establish the performance limits that can be
achieved with the APIT algorithm under non ideal conditions.
For the given simulation scenario, it is observed that the ALS
under ideal conditions after 10 rounds outperforms PIT after
ten rounds. Under non-ideal conditions, it is observed that ALS
performs much better than APIT. This is primarily because
fluctuating RSSI values causes a number of APIT tests to be
incorrect. It is observed that only around 60% of the 52 APIT
tests are correct for each sensor. This results in large arca
estimates on the grid. Thus, lower accuracy levels and larger
area estimates cause the performance of the APIT algorithm to
suffer. The ALS, on the other hand, is more resilient to fading
and shadowing due to the significant difference between
adjacent beacon power levels in each round.

For the scenario in consideration, the area estimate
obtained from the intersection of just 10 regions for ALS, one
from cach round, results in a better performance than APIT,
which considers the intersection of 52 regions. Thus, ALS
achieves the desired performance level as APIT at a much
lower computational cost. The computational complexity in
number of areas is given by O(Nr) for ALS and O(NC3) for
APIT.
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Figure 6. Grid for PIT and APIT schemes with 8 anchor
nodes: 4 at corners and 4 at mid-points of sides

Accuracy/Average Area Estimate for different algorithms
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Figure 7. Average Accuracy/Average Area Estimate for
different algorithms

VL CONCLUSION

In summary, the ALS provides a coarse estimation of the
location of a sensor within a certain area rather than the exact
position. The sensors simply record the signal levels received
from reference nodes, while the sinks carry out most of the
complex computations. The granularity of the area estimates
can be increased easily by modifying system parameters. The
simulations results show that ALS is a very promising scheme
as more than 96% of nodes are located in their estimated areas
or in an adjacent region.
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